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Abstract
We present an integrable Hamiltonian which describes the sinh-Gordon model
on the half line coupled to a non-linear oscillator at the boundary. We explain
how we apply Sklyanin’s formalism to a dynamical reflection matrix to obtain
this model. This method can be applied to couple other integrable field theories
to dynamical systems at the boundary. We also show how to find the dynamical
solution of the quantum reflection equation corresponding to our particular
example.

PACS numbers: 11.10.−z, 05.50.+q, 11.25.−w, 75.10.−b

1. Introduction

Integrable field theories in two dimensions provide us with a theoretical laboratory to study
non-perturbativephenomena in high-energyphysics. They also possess numerous applications
in fluid dynamics, statistical physics, condensed matter physics and quantum optics.

In recent years, it has become possible to extend many of the techniques and results of
integrable models to field theories with boundaries, i.e. theories defined either on the half line
or on an interval, see for instance [4, 6, 13, 23, 24].

We introduce a new class of integrable field theories with boundaries where, instead of
imposing fixed boundary conditions, we couple the boundary field to a mechanical system.

We begin by giving a very concrete example in section 2 where we describe the sinh-
Gordon or sine-Gordon model coupled to a non-linear oscillator at the boundary. Then in
section 3 we explain more generally how one can couple an integrable field theory to a
mechanical system in such a way that the integrability is not broken. We use a generalization
of Sklyanin’s technique for the construction of integrable boundary conditions. The new
ingredient is that the solution of the reflection equation is chosen to depend on boundary
degrees of freedom. In section 4 we specialize this technique to the case of the sine-Gordon
theory providing some details of how we arrived at the model described in section 2. Finally, in
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section 5 we describe how to obtain a particular dynamical solution of the quantum reflection
equation. This is the solution whose classical limit went into the construction in the previous
section. We end with discussions in section 6.

Before we begin let us survey other works that deal with coupling to degrees of freedom
at the boundaries. These fall into three categories:

• Field theory. In [3] the sine-Gordon model is coupled at the quantum level to a
q-oscillator. In [21] it was observed that in order to derive the fixed boundary conditions
for the supersymmetric sine-Gordon model from an action, it was convenient to introduce
a fermionic variable at the boundary which could, however, be integrated out again
immediately. In [12] a free fermion field theory is coupled to a dynamical boundary
degree of freedom.

• Integrable quantum spin chains. Chains coupled to extra spins on the boundary are used
in the study of Kondo impurities coupled to strongly correlated electron systems, see e.g.
[28]. In [11, 30] new dynamical solutions of the quantum reflection equation that are not
of the RKR type were used to describe the coupling of the boundary spins.

• Systems with a finite number of degrees of freedom. Kuznetsov [17] has used dynamical
solutions of the classical reflection equation to couple mechanical tops to integrable non-
linear lattices such as the Heisenberg chain or Toda lattices. Our work can be seen as the
extension of these ideas to field theory while preserving integrability.

2. The sinh-Gordon model coupled to an oscillator at the boundary

In this section we present an integrable Hamiltonian describing the coupling of the sinh-
Gordon field theory to a non-linear oscillator at the boundary. We leave the details of how we
constructed this Hamiltonian for later sections.

The sinh-Gordon model describes a relativistic 1+1 dimensional self-interacting massive
bosonic fieldφ(x, t). The Hamiltonian of the sinh-Gordon model restricted to the half-line is

HshG =
∫ 0

−∞
dx

(
1

2
π2 +

1

2
(∂xφ)

2 +
m2

β̂
2 (coshβ̂φ − 1)

)
. (1)

Hereπ is the conjugate momentum to the fieldφ, i.e.

{π(x), φ(x)} = δ(x − y). (2)

β̂ is the real sinh-Gordon coupling constant andm sets the mass scale. We let space be the
half line fromx = −∞ to x = 0. As usual the fieldφ is assumed to vanish atx = −∞ but not
at x = 0. As will become clear from the construction in section 3 we could also have taken
space to be an interval [x−, x+] and placed a mechanical system at both ends.

We describe the coupling of the sinh-Gordon fieldφ(0) at the boundaryx = 0 to a
non-linear oscillator through the boundary Hamiltonian

Hosc= 2m

β̂
2

(
cosh

(
β̂√

2Mm
p

)
e−β̂φ(0)/2 + cosh

(
β̂
√
Mm

2
√

2
q

)
eβ̂φ(0)/2

)
. (3)

Hereq andp are the position and momentum variables of the oscillator and they obey the
canonical Poisson bracket relation{p, q} = 1. The new free parameterM determines the mass
of the oscillator.

It is instructive to expand the Hamiltonian for the oscillator for smallp andq. One obtains

Hosc= 1

2Mφ

p2 +
Mφ

2
ω2q2 +

4m

β̂
2 cosh

(
β̂φ(0)

2

)
+ O(p4) + O(q4) (4)
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where

Mφ = Meβ̂φ(0)/2 and ω = m/2. (5)

We see that the frequencyω of the oscillator is fixed by the requirement of integrability to be
equal to half the mass of the sinh-Gordon field. The effective mass of the oscillator depends
on the value of the sinh-Gordon field at the boundary. The exact form of the higher non-linear
terms in the Hamiltonian of the oscillator is fixed by integrability.

To shorten the formulas we introduce the rescaled variables

p̂ = β̂√
2Mm

p and ˆq = β̂
√
Mm

2
√

2
q (6)

which have Poisson bracket{p̂, q̂} = β̂
2
/4. In terms of these, the boundary equations of

motion are
d

dt
p̂ = {Hosc, p̂} = −m

2
eβ̂φ(0)/2 sinhq̂ (7)

d

dt
q̂ = {Hosc, q̂} = m

2
e−β̂φ(0)/2 sinhp̂. (8)

To determine the equations of motion of the sinh-Gordon fieldφ one needs to use the full
Hamiltonian

H = HshG+Hosc. (9)

One finds
d

dt
φ(x) = {H,φ(x)} = π(x) (10)

d

dt
π(x) = {H,π(x)} = ∂2

xφ(x)− m2

β̂
sinhβ̂φ(x)

− δ(x)

(
∂xφ(0)− m

β̂

(
e−β̂φ(0)/2 coshp̂ − eβ̂φ(0)/2 cosh ˆq

))
. (11)

Note the term proportional toδ(x) in the equation of motion forπ(x). It has two sources:
the ∂xφ arises when one performs a partial integration in the sinh-Gordon Hamiltonian
which produces a boundary contribution atx = 0 and the other two terms arise because
the Hamiltonian of the oscillator containsφ(0).

We are only going to allow solutions to these equations that are continuous on the left
half-line [−∞, 0]. So in particular we require continuity ofπ(x) at x = 0. This implies that
theδ(x) term in the equation of motion forπ(x) vanishes because this term would otherwise
forceπ(x) to develop a discontinuity atx = 0. We therefore know that the solutions will have
to satisfy the boundary condition

∂xφ(0) = m

β̂

(
coshp̂e−β̂φ(0)/2 − cosh ˆqeβ̂φ(0)/2

)
. (12)

We can combine the equations of motion (10) and (11) to obtain the usual sinh-Gordon
equation of motion

∂2
xφ − ∂2

t φ = m2

β̂
sinhβ̂φ. (13)

This equation forφ together with the boundary condition (12) and the equations of motion (7)
and (8) for the oscillator form one system of coupled equations involving both ODEs and a
PDE that needs to be solved to obtain the time evolution of the system.
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We call this system ‘integrable’ because, as we will show in section 4, we can construct
an infinite number of conserved higher spin chargesIn that are in involution with each other.
The first non-trivial charge beyond the Hamiltonian is the spin 3 charge

I3 =
∫ 0

−∞

(
β̂

4

16m3

(
π4 + 6π2(∂xφ)

2 + (∂xφ)4
)

+
β̂

2

m3

(
(∂xπ)

2 +
(
∂2
xφ
)2
)

+
β̂

2

4m

(
π2 + 5(∂xφ)

2
)

coshβ̂φ +
m

8
(cosh 2̂βφ − 1)

)
dx

+ e3β̂φ(0)/2
(

1

2
cosh ˆq +

1

6
cosh3 q̂

)

− eβ̂φ(0)/2
(

3

2
coshp̂ − 1

2
cosh2 q̂ coshp̂ − β̂

2

2m2π
2 cosh ˆq

)

+ e−3β̂φ(0)/2
(

1

2
coshp̂ +

1

6
cosh3 p̂

)

− e−β̂φ(0)/2
(

3

2
cosh ˆq − 1

2
cosh2 p̂ cosh ˆq − β̂

2

2m2π
2 coshp̂

)

+
2β̂

m
sinhq̂ sinhp̂. (14)

The boundary condition (12) is similar in form to the previously known integrable
boundary conditions [13, 19]

∂xφ(0) = m

β̂

(
ε0 e−β̂φ(0)/2 − ε1 eβ̂φ(0)/2

)
(15)

with the crucial difference of course that the parametersε0 andε1 were fixed numbers rather
than dynamical variables as in our case. Only in one case do our boundary conditions reduce
to the fixed boundary conditions (15), namely when the boundary oscillator is at rest, i.e. at
q = p = 0. This corresponds to the boundary conditions withε0 = ε1 = 1. The quantum
fluctuations of the boundary oscillator will probably imply that our model never reduces to
the usual boundary conditions in the quantum case.

After quantization the sinh-Gordon model describes scalar massive particles. The direct
solution of the quantum theory is rather difficult [25]. However, because of the existence
of higher spin conserved charges one knows that there is no particle production and that
the particle scattering factorizes into a product of two-particle scattering processes. The
corresponding scattering amplitude has been obtained by analytical continuation in the
coupling constant from the breather scattering amplitude in the sine-Gordon model [29].

To describe the sinh-Gordon particles on the half-line one also needs to give the reflection
amplitudes. In the case of the fixed boundary conditions (15) this amplitude can again be
obtained from the corresponding breather reflection amplitude in the sine-Gordon model [14].
Because we expect that the results for our model can be obtained similarly, we now turn our
attention to the sine-Gordon model.

When we let the sinh-Gordon coupling constantβ̂ become purely imaginary, i.e. if we set
β̂ = iβ with β purely real, then the sinh-Gordon Hamiltonian (1) turns into the sine-Gordon
Hamiltonian

HsG =
∫ 0

−∞
dx

(
1

2
π2 +

1

2
(∂xφ)

2 − m2

β2 (cosβφ − 1)

)
. (16)
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Under the same replacement the Hamiltonian for the oscillator becomes

Hosc= −2m

β2

(
cos

(
β√

2Mm
p

)
e−iβφ(0)/2 + cos

(
β
√
Mm

2
√

2
q

)
eiβφ(0)/2

)
. (17)

Note that in general this Hamiltonian is not real. We are familiar with this situation from
imaginary coupled affine Toda theories. There the non-real Hamiltonian implies that the
classical soliton solutions are complex. The energy of these configurations is nevertheless real
[15]. Similarly, here the classical boundary solutions will be complex, but we expect that their
energies will be real.

3. Sklyanin’s formalism

In a seminal two-page paper [23] Sklyanin described how one can impose boundary conditions
on an integrable field theory without breaking integrability. Below we will describe how
Sklyanin’s formalism allows us to couple an integrable field theory to a mechanical system at
the boundary rather than imposing a fixed boundary condition. This section will be easier to
understand for readers who are familiar with the approach to integrable models described in
[10].

In the following we assume that there exists a pair of matrix valued functionsax(λ, x)

andat (λ, x) which depend on the fields of the theory, their conjugate momenta, and on a
spectral parameterλ = eθ ∈ C, so that the classical equations of motion of the field theory
are equivalent to the Lax pair equation

[∂x − ax(λ, x), ∂t − at (λ, x)] = 0 for all λ. (18)

Hereax(λ, x) andat (λ, x) depend onx andt only implicitly through their dependence on the
fields. ∂x and∂t denote total differentiations with respect to the space or time variable. If
ax(λ, x) andat (λ, x) are thought of as the components of a connection then equation (18) is
the zero curvature condition for this connection.

Equation (18) is the compatibility condition for the overdetermined system of equations

∂T

∂x+
= ax(λ, x+)T

(19)
∂T

∂t
= at (λ, x+)T − T at (λ, x−)

where the transition matrixT ≡ T (x+, x−, λ) is defined to be a solution of the differential
equations (19) with the initial conditionsT (x−, x−, λ) = I . It can be expressed as the
path-ordered exponential ofax(λ, x) from x− to x+

T (x+, x−, λ) = P exp

(∫ x+

x−
ax(λ, x) dx

)
(20)

so that the operators at points nearer tox+ are further to the left. We assume that the Poisson
brackets for the functionsax (λ, x) can be written in the form{

1
ax(λ1, x),

2
ax(λ2, y)

}
= δ(x − y)

[
r(ln(λ1/λ2)),

1
ax(λ1, x) +

2
ax(λ2, y)

]
. (21)

Here we used the short-hand notations
1
a(λ, x) = a(λ, x)⊗ I ,

2
a(λ, x) = I ⊗ a(λ, x) and the

r-matrix is independent of the field or its conjugate momentum. It follows that{
1
T (x+, x−, λ1),

2
T (x+, x−, λ2)

}
=
[
r(ln(λ1/λ2)),

1
T (x+, x−, λ1)

2
T (x+, x−, λ2)

]
. (22)
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For simplicity we assume below that ther-matrix has the property1

r(θ) = −r(−θ). (23)

Let us now introduce two matrix valued functionsK±(θ ) of the spectral parameterλ = eθ, not
depending on the fields. However, in departure from the situation described by Sklyanin in
[23], we let these boundaryK matrices be dynamical. This means that we enlarge the phase
space of the theory by introducing extra degrees of freedom which we think of as describing
mechanical systems placed at the boundaries. We then let theK matrices depend on these
new dynamical variables in such a way that their Poisson brackets are given by the following
classical reflection equation:{

1
K±(θ),

2
K±(θ ′)

}
=
[
r(θ − θ ′),

1
K±(θ)

2
K±(θ ′)

]

+
1
K±(θ)r(θ + θ ′)

2
K±(θ ′)− 2

K±(θ ′)r(θ + θ ′)
1
K±(θ). (24)

Furthermore, we assume that the dynamical systems on the left and right boundary are

independent so that

{
1
K±(θ),

2
K∓(θ ′)

}
= 0.

Following Sklyanin [23] we define the functional

T (x+, x−, λ) = T (x+, x−, λ)K−(lnλ)T −1(x+, x−,1/λ) (25)

which generalizes the transition matrix to the boundary case. Using equation (23) and
that the Poisson bracket is antisymmetric, satisfies the Jacobi identity and has the property
{A,BC} = {A,B}C+B{A,C} it is straightforward to show thatT (x+, x−, λ) obeys a Poisson
bracket relation similar to those for theK’s given in equation (24). A family of transfer matrices
is defined by

τ (λ) = tr
(
K+(ln(λ))T (x+, x−, λ)

)
. (26)

These are in involution for any values of the spectral parameters

{τ (λ1), τ (λ2)} = 0 for all (λ1, λ2) ∈ C (27)

provided appropriate boundary conditions are imposed atx±. As the generating function
τ (λ) can be expanded about the singularities in the transition matrixT (x+, x−, λ) it gives an
infinite number of quantitiesIn in involution with each other. Among these we will identify
the Hamiltonian of the model. Then it follows that the{In} are time conserved. The model
is thus integrable on the interval [x−, x+]. Different dynamical systems can be coupled at the
two boundaries by choosing differentK− andK+.

4. Derivation of the sine-Gordon example

In this section we will provide some details needed to apply the general method described in
the previous section to the sine-Gordon model in order to derive the coupling to a boundary
oscillator described in section 2.

The equation of motion (13) for the sine-Gordon field is representable as the zero-curvature
condition for the Lax connectionaµ(λ, x) written in terms of the standard Pauli matricesσ k,
k = 1, 2, 3 as

ax(λ, x) = β

4i

∂φ

∂t
σ3 +

m

4i

(
λ +

1

λ

)
sin

(
βφ

2

)
σ1 +

m

4i

(
λ− 1

λ

)
cos

(
βφ

2

)
σ2 (28)

at(λ, x) = β

4i

∂φ

∂x
σ3 +

m

4i

(
λ− 1

λ

)
sin

(
βφ

2

)
σ1 +

m

4i

(
λ +

1

λ

)
cos

(
βφ

2

)
σ2. (29)

1 This could however be relaxed, see for example [9] for an application of Sklyanin’s formalism to affine Toda theory
where ther-matrix does not possess this property.
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We defineπ(x, t) = ∂φ(x,t)
∂t

. Note that the matrixax (λ, x) possesses two singularities located
at |λ| = 0 and|λ| = ∞.

To extend the standard definition of the Poisson bracket, we change the range of the
integrals from [−∞, +∞] to [x−, x+]. Then, using the notationπ(x) ≡ π(x, t) andφ(x) ≡
φ(x, t) at fixed timet we define the Poisson bracket as

{O1,O2} =
∫ x+

x−
dx

[
δO1

δπ(x)

δO2

δφ(x)
− δO1

δφ(x)

δO2

δπ(x)

]
+
∂O1

∂p

∂O2

∂q
− ∂O1

∂q

∂O2

∂p
(30)

for any observableOj . Obviously, this bracket possesses the basic properties of a Poisson
bracket. It is skew symmetric and satisfies the Jacobi identity. Also, we have{O1,O2O3} =
{O1,O2}O3 + O2{O1,O3}. Using the definition (30), the non-vanishing Poisson brackets in
the sine-Gordon field theory at constant time slices are{π(x), φ(y)} = δ(x − y) and for the
boundary variablesp(t), q(t) we have{p, q} = 1. Now, by calculating the Poisson brackets of
the entries of the matrixax (λ, x) it gives a unique solution to equation (22):

rSG(θ) = β2 cosh(θ)

16 sinh(θ)
(I ⊗ I − σ3 ⊗ σ3)− β2

16 sinh(θ)
(σ1 ⊗ σ1 + σ2 ⊗ σ2) . (31)

To construct the generating function (26) of the integrals of motion for the sine-Gordon
model with dynamical boundaries, we need (p, q)-dependent solutionsK±(θ ) to the classical
reflection equation (24). Let us introduce the rescaled variables ˜p = pβ/2

√
2 and

q̃ = qβ/2
√

2. Then the matrix [26]

K+(θ) = 2

(
cosh(p̃ + q̃)eθ − cosh(p̃ − q̃)e−θ 2 sinh2(θ)− 2 sinh2(p̃)

2 sinh2(q̃)− 2 sinh2(θ) cosh(p̃ − q̃)eθ − cosh(p̃ + p̃)e−θ

)
(32)

satisfies the classical reflection equation (24) with the classicalr-matrixr(θ ) = rSG(θ ) defined
above. We could place additional degrees of freedom at the left boundary as well and use a
K− of a similar form. However we would not learn anything new and for simplicity we choose
K−(θ ) = I, which is a trivial solution of the classical reflection equation (24) and then move the
left boundary off to−∞, i.e. we restrict the sine-Gordon field theory to the half-line. We then
assume that the field and its conjugate momentum satisfy the Schwartz boundary condition
φ(x−, t) = 0 andπ(x−, t) = 0 atx− = −∞. Using equation (25) the generating function (26)
becomes

τ (λ) = tr
(
K+(ln(λ))T (0,−∞, λ)T (−∞,0,1/λ)

)
. (33)

Fixing Im(θ) = π
2 , the transition matrixT (−∞, 0, λ) has singularities located atλ =

±i∞ andλ = ±i0. There will exist two infinities of involutive integrals coming from the
coefficients of the Laurent expansions about these two values. First, let us consider the
asymptotic expansion of the transfer matrixτ (λ) as|λ| → ∞. Substituting the solutionK+(θ )
of (32) into (33) and expanding aboutλ = i∞, we obtain a Laurent series inλ which provides
an infinite number of quantitiesIn:

ln
(
τ (λ)/λ2

)
=

∞∑
n=−1

In

λn
. (34)

In performing this expansion it has helped us to look at how the corresponding calculation
was performed in [19] for the case of non-dynamicalK. We find I−1 = − imL

2 |L→∞ and

I0 = 0. The next quantityI1 = − iβ2

2mH + const gives the HamiltonianH for the system, where

H =
∫ 0

−∞
dx

[
'(−x)

(
1

2

[
π2 + (∂xφ)

2
]

− m2

β2 (cos(βφ)− 1)

)

+ δ(x)
2m

β2

(
cosh(p̃ + q̃)eiβφ/2 + cosh(p̃ − q̃)e−iβφ/2

)]
. (35)
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This can be seen to agree with the Hamiltonian given in section 2 after we perform the
canonical transformation

p̃ + q̃ → q̂ p̃ − q̃ → −p̂ φ(x) → φ(x) + 2π/β. (36)

The next term in the expansion (34) of orderO(1/λ2) reduces toI2= 0 after using the boundary
condition (12). Similarly theO(1/λ3) term in (34) reproduces the spin 3 chargeI3 given in
(14), again after the canonical transformation (36). It is believed that the existence of such
higher local integrals of motion is a sufficient condition for the classical integrability of the
system.

Finally we observe that because the transfer matrixτ (λ) in (33) is invariant under the
simultaneous replacementsλ → −1/λ, φ(x, t) → −φ(x, t) andq → −q, the expansion of
τ (λ) around the singularity at 0 gives analogous quantitiesIn. Note thatH andI3 are invariant
under this transformation.

It is rather interesting to note the following: ifp andq are fixedc-numbers then, the
(p, q)-dependent part of the Poisson bracket (30) disappears and the left-hand side of equation
(24) vanishes. Considering the two leading terms in the expansion inλ of the classical
reflection matrixK+(θ ) given in equation (32) we obtain

K+(ln(λ)) |λ|→∞= λ2
( 2
λ

cosh(p̃ + q̃) 1
−1 2

λ
cosh(p̃ − q̃)

)
+O(λ0) (37)

which can be shown to satisfy equation (24). Let us now introduce the notation

cosh(p̃ + q̃) = P + iQ

cosh(p̃ − q̃) = P − iQ. (38)

Multiplying K+(ln(λ)) by 1/λ2 the reflection matrix now writes

K+(ln(λ)) ∼ 2P

λ
I + iσ2 +

2iQ

λ
σ3 +O(1/λ2) . (39)

Up to order 1/λ2 this is the sameK-matrix used in [19] to construct the integrable boundary
conditions used by Ghoshal and Zamolodchikov in [13]. Of course, our next quantitiesI2 and
I3 differ from those in [19] due to the contributions of orderO(1/λ2) that appear in our case.

5. Dynamical solutions of the quantum reflection equation

In this section we look for operator-valued solutionsK±(θ; α) of the quantum reflection
equations [24]2

R(θ − θ ′)
1
K−(θ + α/2; α)R(θ + θ ′)

2
K−(θ ′ + α/2; α)

= 2
K−(θ ′ + α/2; α)R(θ + θ ′)

1
K−(θ + α/2; α)R(θ − θ ′) (40)

R(−θ + θ ′)
1
Kt+(θ − α/2; α)R(−θ − θ ′)

2
Kt+(θ ′ − α/2; α)

=
2
Kt+(θ ′ − α/2; α)R(−θ − θ ′)

1
Kt+(θ − α/2; α)R(−θ + θ ′). (41)

HereR(θ ) is a given quantumR-matrix. We see that the quantum reflection matrixK−(θ; α)
for the left boundary has to satisfy a different equation to the quantum reflection matrix
K+(θ; α) for the right boundary. The classical reflection equation (24) can be obtained as a
limiting case of either of the quantum reflection equations (40) and (41)3

2 OurK± are related to theK± of [24] by K±(θ + α/2) = K±(θ) andα = η.
3 In the limit α → 0 one recovers the classicalR-matrix (up to an overallθ -dependent coefficient)R(θ) ∼ I +
αr(θ) +O(α2) whereI is the identity matrix. The classical reflection matricesK±(θ ) are defined to be the first term
in the expansion of the quantum reflection matrices:K±(θ;α)

α→0
= K±(θ) + αδK±(θ) + O(α2).
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One useful way to think of the reflection equation (40) is to view the entries of the matrix
K−(θ; α) as the generators of an associative algebra with quadratic algebra relations given
by (40). Such an algebra is often called a reflection equation algebra. Finding a solution of
a reflection equation is therefore the same as finding a representation of the corresponding
reflection equation algebra. In equation (46) we will give an infinite dimensional representation
in terms of position and momentum operatorsq andp.

Operator-valued reflection matrices have several applications: (1) they can be used in
integrable lattice models or quantum spin chains to couple additional boundary spins to the
model [11, 30], (2) they can describe the reflection of particle excitations from a boundary if
there are degeneracies in the boundary spectrum, and (3) their classical limit can be used to
construct integrable models [17, 26].

As an example, let us consider the following trigonometric and hyperbolic minimal
solutions of the quantum Yang–Baxter equation:

R(θ, γ ) = a(θ)

2
(I ⊗ I + σ3 ⊗ σ3) +

b(θ)

2
(I ⊗ I − σ3 ⊗ σ3)

+
c(θ)

2
(σ1 ⊗ σ1 + σ2 ⊗ σ2) . (42)

This R-matrix gives the Boltzmann weights of the six-vertex model which is known to be
related to the XXZ and the XXX (in its rational limit) spin chains. It possesses three different
regimes called antiferroelectric (I), trigonometric (II) and ferroelectric (III) with

(I) a(θ) = sinh(γ − θ) b(θ) = sinh(θ) c(θ) = sinh(γ ) γ > θ > 0
(II) a(θ) = sin(γ − θ) b(θ) = sin(θ) c(θ) = sin(γ ) π > γ > θ > 0
(III ) a(θ) = sinh(θ + γ ) b(θ) = sinh(θ) c(θ) = sinh(γ ) θ > 0, γ > 0

where the parameterγ characterizes the anisotropy of the model. In particular, the
trigonometric regime of the six-vertex model (II) describes the critical (zero gap) limit of
the eight-vertex model [2].

A dynamic solution of the quantum reflection equation corresponding to thisR-matrix
was already given in [16, 18] without derivation. We will derive a similar solution below but
with some minor quantum adjustments.

For further convenience, defining theK-matrix at the quantum level by

K−(θ; α) =
(
A(θ) B(θ)

D(θ) E(θ)

)
(43)

and using the expression for theR-matrix written above, the reflection equation (40) now
reduces to eight functional equations:

(i) a−c+(BD
′ − B ′D) + a−a+[A,A′] = 0

(ii) b−b+(AE
′ − E′A) + c−c+[E,E′] + c−a+(DB

′ −D′B) = 0

(iii ) a−c+(DB
′ −D′B) + a−a+[E,E′] = 0

(iv) c−b+(EA
′ − E′A) + b−c+(AA

′ − E′E) + b−a+(BD
′ −D′B) = 0

(v) b−b+AD
′ + c−c+ED

′ + c−a+DA
′ − a−a+D

′A− a−c+E
′D = 0

(vi) b−a+BE
′ + c−b+EB

′ + b−c+AB
′ − a−b+E

′B = 0

where we use the shorthand notationsa− = a(θ − θ ′), a+ = a(θ + θ ′ − α) and similarly for
b andc as well asA = A(θ) andA′ = A(θ ′) and similarly forB, D andE. The remaining
two equations are obtained from (v) and (vi) through the substitutionsA ↔ E andB ↔ D.
Let us now focus on solutions of kind (III). To find the solution of the equations (i)–(vi), we
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assume the following form for theK-matrix:

A(θ) = Feθ+α/2 −Ge−θ−α/2 E(θ) = Geθ+α/2 − Fe−θ−α/2

B(θ) = −2 sinh2 θ + 2U D(θ) = 2 sinh2 θ − 2V.

Settingγ = α in case (III), the generators{F,G,U,V } have to satisfy the following relations:

[F,G] = −2 sinhα(U − V ) [U,V ] = sinh 2α

2
(F 2 −G2)

FV e−α − VFeα − F sinhα +G sinh 2α/2 = 0

GV eα − VGe−α +G sinhα − F sinh 2α/2 = 0 (44)

FUe−α − VFeα − F sinhα +G sinh 2α/2 = 0

GUeα − UGe−α +G sinhα − F sinh 2α/2 = 0 .

One can find a representation for the generators{F,G,U,V } satisfying these quadratic-linear
relations in terms of the position and momentum operatorsq andp with commutation relation

[p(t), q(t)] = α. (45)

This leads to the following solution of the quantum reflection equation (40):

K−(θ; α)=
(

cosh(p−q)eθ+α/2− cosh(p + q)e−θ−α/2 2 sinh2(q)− 2sinh2(θ)

2 sinh2(θ)− 2 sinh2(p) cosh(p + q)eθ+α/2− cosh(p − q)e−θ−α/2

)
. (46)

This K−(θ; α) satisfies (40) also in regime (I) withγ = −α. With the substitutionθ→ iθ
andγ→ iγ the solution corresponding to the regime (II) follows immediately. The matrix
K+(θ; α) = Kt−(−θ; α) provides a solution of (41). The classical reflection matrix (32) used
in the previous section is obtained as the classical limit ofK−(θ; α).

As was observed by Sklyanin, given ac-number-valued solutionK of the reflection
equation one can always construct an infinite number of additional operator-valued solutions
by dressingK with R-matrices toRKR, see [25] for details. The solution that we derived above
is probably not of this factorizable form.

6. Discussion

We have explicitly constructed an integrable classical field theory with extra degrees of freedom
living at the boundary. We have shown how to obtain concrete expressions for the Hamiltonian
and higher spin-conserved charges.

While in this paper the sinh-Gordon model coupled to an oscillator at the boundary was
given only as an example of the kind of model one can obtain, we believe that it is of great
interest in its own right and we intend to study both its classical solutions and its quantization.
In both endeavours we will be helped by the large amount of work that has been done already
on the sine-Gordon model with fixed boundary conditions, see for example [1, 13, 20, 22, 27].

Of particular interest are the classical solutions describing oscillating boundary states. In
the case of the fixed boundary conditions these so-called boundary breather solutions were
found and quantized semiclassically to obtain the spectrum of boundary states [7, 8]. In our
model we will look for classical solutions in which not only the fieldφ(x) near the boundary,
but also the boundary variablesp and q oscillate. It is possible that there will be two or
more solutions with the same energy, they might for example be obtained from one another
through the transformationφ → −φ, p → −q, q → p, which is a symmetry of the theory.
This question of how many degenerate states there are, is very relevant to the determination
of the reflection matrices. As in the case of fixed boundary conditions described in [13], the
soliton reflection matrices will have to satisfy the quantum reflection equation. However, if
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there is a degeneracy of boundary states then one will look for operator-valued solutions of
the reflection equation so as to be able to describe processes where the reflection of a soliton
rotates the degenerate boundary states among themselves.

The sinh-Gordon model is just the simplest member of the family of affine Toda field
theories. For all Toda theories there exist integrable boundary conditions of the form [5]

∂x �φ(0) =
r∑
i=0

Ai �αie�αi · �φ(0)/2 . (47)

However, the boundary parametersAi were found to be restricted by the requirement of
integrability to only a small discrete set of values. It would be nice to see if one could replace
the fixed parametersAi by the dynamical variables of a mechanical system in the way in which
we have done for the sinh-Gordon model in this paper. The fixed boundary conditions might
then arise as the possible stationary points of the boundary system.

Besides the affine Toda field theories, whose integrability is based on the trigonometric
R-matrices, there are many integrable field theories related to rationalR-matrices, for example,
the non-linear Schrödinger model and the principal chiral models. Finding dynamical solutions
of the reflection equation for these rational models is simpler than in the trigonometric case
and many are already known [17]. These could be used to construct integrable couplings to
boundary mechanical systems for these field theories.
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